Observation of number-density-dependent growth of plasmonic nanobubbles

نویسندگان

  • Takashi Nakajima
  • Xiaolong Wang
  • Souvik Chatterjee
  • Tetsuo Sakka
چکیده

Interaction dynamics of laser pulses and nanoparticles are of great interest in recent years. In many cases, laser-nanoparticle interactions result in the formation of plasmonic nanobubbles, and the dynamics of nanoparticles and nanobubbles are inseparable. So far, very little attention has been paid to the number density. Here we report the first observation of number-density-dependent growth of plasmonic nanobubbles. Our results show that the nanobubbles growth depends (does not depend) on the number density at high (low) laser fluence, although the inter-particle distance in the solution is as long as 14-30 μm. This cannot be explained by the existing physical picture, and we propose a new model which takes into account the pressure waves arising from nanoparticles. The numerical results based on this model agree well with the experimental results. Our findings imply that the number density can be a new doorknob to control laser-nanobubble as well as laser-nanoparticle interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation

In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...

متن کامل

Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles

Plasmonic nanobubbles (PNBs) are transient vapor nanobubbles generated in liquid around laser-overheated plasmonic nanoparticles. Unlike plasmonic nanoparticles, PNBs' properties are still largely unknown due to their highly nonstationary nature. Here we show the influence of the duration of the optical excitation on the energy efficacy and threshold of PNB generation. The combination of picose...

متن کامل

Strategic modeling for diagnosis and annihilation of cancer cells with nanobubbles developed from multimode fiber optic based plasmonic nanosensors

We address a pioneering approach of cancer treatment based on vapor nanobubbles developed from multimode optical fibers. The optical fibers can be utilized for sensing applications like detection of pathogens, sensing of chemical and biological species etc. and at the same time can be used for the detection and remedy of cancer. The procedure starts with the theoretical simulation of the optica...

متن کامل

Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters.

The synergistic physical and biological effects of selective targeting and activation of plasmonic nanoparticles were studied for a transient vapor nanobubble mode. Simultaneous optical activation of two plasmon resonances in multi-nanoparticle clusters significantly improved the selectivity and efficacy of the nanobubble generation through and was termed "rainbow plasmonic nanobubbles." The ra...

متن کامل

Plasmonic Nanobubbles as Tunable Cellular Probes for Cancer Theranostics

This review is focused on a novel cellular probe, the plasmonic nanobubble (PNB), which has the dynamically tunable and multiple functions of imaging, diagnosis, delivery, therapy and, ultimately, theranostics. The concept of theranostics was recently introduced in order to unite the clinically important stages of treatment, namely diagnosis, therapy and therapy guidance, into one single, rapid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016